Recent Development of Advanced Electrode Materials by Atomic Layer Deposition for Electrochemical Energy Storage

نویسندگان

  • Cao Guan
  • John Wang
چکیده

Electrode materials play a decisive role in almost all electrochemical energy storage devices, determining their overall performance. Proper selection, design and fabrication of electrode materials have thus been regarded as one of the most critical steps in achieving high electrochemical energy storage performance. As an advanced nanotechnology for thin films and surfaces with conformal interfacial features and well controllable deposition thickness, atomic layer deposition (ALD) has been successfully developed for deposition and surface modification of electrode materials, where there are considerable issues of interfacial and surface chemistry at atomic and nanometer scale. In addition, ALD has shown great potential in construction of novel nanostructured active materials that otherwise can be hardly obtained by other processing techniques, such as those solution-based processing and chemical vapor deposition (CVD) techniques. This review focuses on the recent development of ALD for the design and delivery of advanced electrode materials in electrochemical energy storage devices, where typical examples will be highlighted and analyzed, and the merits and challenges of ALD for applications in energy storage will also be discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binder-free copper hexacyanoferrate electrode prepared by pulse galvanostatic electrochemical deposition for aqueous-based Al-ion batteries

Copper hexacyanoferrate (CuHCF) nanoparticles with tunnel-like Prussian blue structure were deposited on graphite substrate via pulse galvanostatic electrochemical deposition at 25 mA cm-2 with both on-time and off-time periods of 0.1 s, which presented the ability to intercalation/de-intercalation of Al ions reversibly in aqueous solution. The crystal structure of the as-prepared CuHCF f...

متن کامل

Atomic Layer Deposition of Model Metal Oxide Electrode Architectures

A thorough knowledge of chemical and electrochemical processes that occur at the electrode interface is paramount to the development of improved materials for electrochemical energy storage. One approach is to study model systems with well-defined structures and geometries (architectures) more amenable to systematic and careful study of such materials. The goal of this work is to develop new ap...

متن کامل

Materials for electrochemical capacitors.

Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved thro...

متن کامل

Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries

Electrode materials and electrolytes play a vital role in device-level performance of rechargeable Li-ion batteries (LIBs). However, electrode structure/component degeneration and electrode-electrolyte sur-/interface evolution are identified as the most crucial obstacles in practical applications. Thanks to its congenital advantages, atomic layer deposition (ALD) methodology has attracted enorm...

متن کامل

Highly Reversible Conversion-Type FeOF Composite Electrode with Extended Lithium Insertion by Atomic Layer Deposition LiPON Protection

High-energy conversion electrodes undergo successive Li insertion and conversion during lithiation. A primary scientific obstacle to harnessing the potentially high lithium storage capabilities of conversion electrode materials has been the formation of insulating new phases throughout the conversion reactions. These new phases are chemically stable, and electrochemically irreversible if formed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016